Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds
نویسندگان
چکیده
Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.
منابع مشابه
Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks.
The biotic recovery from Earth's most severe extinction event at the Permian-Triassic boundary largely reestablished the preextinction structure of marine trophic networks, with marine reptiles assuming the predator roles. However, the highest trophic level of today's marine ecosystems, i.e., macropredatory tetrapods that forage on prey of similar size to their own, was thus far lacking in the ...
متن کاملA Carapace-Like Bony ‘Body Tube’ in an Early Triassic Marine Reptile and the Onset of Marine Tetrapod Predation
Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggest...
متن کاملA bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales.
Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic th...
متن کاملTrophic convergence drives morphological convergence in marine tetrapods
Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of...
متن کاملEcomorphological diversications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction
—Mesozoic marine ecosystems were dominated by several clades of reptiles, including sauropterygians, ichthyosaurs, crocodylomorphs, turtles, and mosasaurs, that repeatedly invaded ocean ecosystems. Previous research has shown that marine reptiles achieved great taxonomic diversity in the Middle Triassic, as they broadly diversified into many feeding modes in the aftermath of the Permo-Triassic ...
متن کامل